HIV-1 Subtype C Unproductively Infects Human Cardiomyocytes In Vitro and Induces Apoptosis Mitigated by an Anti-Gp120 Aptamer

نویسندگان

  • Walter R. Lopes de Campos
  • Nthato Chirwa
  • Grace London
  • Lia S. Rotherham
  • Lynn Morris
  • Bongani M. Mayosi
  • Makobetsa Khati
  • Andrew D. Badley
چکیده

HIV-associated cardiomyopathy (HIVCM) is of clinical concern in developing countries because of a high HIV-1 prevalence, especially subtype C, and limited access to highly active antiretroviral therapy (HAART). For these reasons, we investigated the direct and indirect effects of HIV-1 subtype C infection of cultured human cardiomyocytes and the mechanisms leading to cardiomyocytes damage; as well as a way to mitigate the damage. We evaluated a novel approach to mitigate HIVCM using a previously reported gp120 binding and HIV-1 neutralizing aptamer called UCLA1. We established a cell-based model of HIVCM by infecting human cardiomyocytes with cell-free HIV-1 or co-culturing human cardiomyocytes with HIV-infected monocyte derived macrophages (MDM). We discovered that HIV-1 subtype C unproductively (i.e. its life cycle is arrested after reverse transcription) infects cardiomyocytes. Furthermore, we found that HIV-1 initiates apoptosis of cardiomyocytes through caspase-9 activation, preferentially via the intrinsic or mitochondrial initiated pathway. CXCR4 receptor-using viruses were stronger inducers of apoptosis than CCR5 utilizing variants. Importantly, we discovered that HIV-1 induced apoptosis of cardiomyocytes was mitigated by UCLA1. However, UCLA1 had no protective effective on cardiomyocytes when apoptosis was triggered by HIV-infected MDM. When HIV-1 was treated with UCLA1 prior to infection of MDM, it failed to induce apoptosis of cardiomyocytes. These data suggest that HIV-1 causes a mitochondrial initiated apoptotic cascade, which signal through caspase-9, whereas HIV-1 infected MDM causes apoptosis predominantly via the death-receptor pathway, mediated by caspase-8. Furthermore the data suggest that UCLA1 protects cardiomyocytes from caspase-mediated apoptosis, directly by binding to HIV-1 and indirectly by preventing infection of MDM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition.

The potent ability of small interfering RNA (siRNA) to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for diseases including HIV. However, efficient delivery of siRNAs remains a key obstacle to successful application. A targeted intracellular delivery approach for siRNAs to specific cell types is highly desirable. HIV-1 infection is ini...

متن کامل

Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2'F-RNA aptamers.

Human immunodeficiency virus type 1 (HIV-1) has evolved a number of strategies to resist current antiretroviral drugs and the selection pressures of humoral and cellular adaptive immunity. For example, R5 strains, which use the CCR5 coreceptor for entry and are the dominant viral phenotype for HIV-1 transmission and AIDS pathogenesis, are relatively resistant to neutralization by antibodies, as...

متن کامل

Isolation and characterization of 2'-F-RNA aptamers against whole HIV-1 subtype C envelope pseudovirus.

Aptamers, which are artificial nucleic acid ligands akin to antibodies in function, represent a new class of molecules that can prevent HIV infection. In this study, we isolated RNA aptamers against whole HV-1CAP45 enveloped pseudotyped virus, with a view to target surface molecules that facilitate infection, such as the envelope protein, in their native form. HIV-1CAP45 belongs to subtype C vi...

متن کامل

Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells

The envelope glycoprotein of human immunodeficiency virus (HIV) consists of an exterior glycoprotein (gp120) and a trans-membrane domain (gp41) and has an important role in viral entry into cells. HIV-1 entry has been validated as a clinically relevant anti-viral strategy for drug discovery. In the present work, several 2'-F substituted RNA aptamers that bind to the HIV-1(BaL) gp120 protein wit...

متن کامل

[Frontiers in Bioscience 11, 89-112, January 1, 2006] 89 HIV-1 inactivation by nucleic acid aptamers

1. Abstract 2. Nucleic acid aptamers 3. Inhibition of HIV-1 enzymatic function 3.1. Reverse Transcriptase. 3.1.1. Anti-RT drugs, side effects and resistance 3.1.2. RNA aptamers in vitro 3.1.3. Anti-RT ssDNA aptamers in vitro 3.1.4. Anti-RT RNA aptamers in cells 3.2. Protease 3.2.1. Protease aptamers 3.3. Integrase 3.3.1. Integrase aptamers in vitro 4. Inhibition of HIV-1 gene expression: transc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014